Complex structures from patterned cell sheets.

نویسندگان

  • M Misra
  • B Audoly
  • S Y Shvartsman
چکیده

The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the periodontal regenerative properties of patterned human periodontal ligament stem cell sheets

Purpose The aim of this study was to determine the effects of patterned human periodontal ligament stem cell (hPDLSC) sheets fabricated using a thermoresponsive substratum. Methods In this study, we fabricated patterned hPDLSC sheets using nanotopographical cues to modulate the alignment of the cell sheet. Results The hPDLSCs showed rapid monolayer formation on various surface pattern width...

متن کامل

A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization.

The proper function of many tissues depends critically on the structural organization of the cells and matrix of which they are comprised. Therefore, in order to engineer functional tissue equivalents that closely mimic the unique properties of native tissues it is necessary to develop strategies for reproducing the complex, highly organized structure of these tissues. To this end, we sought to...

متن کامل

Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based parti...

متن کامل

Multizone Paper Platform for 3D Cell Cultures

In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect ...

متن کامل

Cooperative deformations of periodically patterned hydrogels

Nature has shown elegant paradigms of smart deformation, which inspired biomimetic systems with controllable bending, folding, and twisting that are significant for the development of soft electronics and actuators. Complex deformations are usually realized by additively incorporating typical structures in selective domains with little interaction. We demonstrate the cooperative deformations of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 372 1720  شماره 

صفحات  -

تاریخ انتشار 2017